Category Archives: WW2

Book Review – Lion Rampant by Robert Woollcombe

 

A motorcycle and infantry of the 2nd Glasgow H...
A motorcycle and infantry of the 2nd Glasgow Highlanders, 46th Brigade, 15th (Scottish) Division, advance along a lane near Caumont, (Photo credit: Wikipedia)

Lion Rampant by Woollcombe Robert

My rating: 5 of 5 stars

The author was a platoon commander in Normandy (going ashore on D+8) and then a Company 2ic from the breakout until the end of the war (although with six Company Commanders in six months he spent almost as much time in command as any of the ‘permanent’ OCs). He served with a battalion of the KOSB in 15th Scottish Division in 1944 & 1945.

Like all first hand accounts it has a certain pathos to it. Detailed descriptions of people and his interaction with them, like the young sniper he shared a slit trench with under fire in Holland for six hours until the other older more experienced member of the sniper team comes to meet him. Later only the older man returns from the patrol, although the enemy sniper was dealt with too.

If you want to know what infantry life was like then this is worth reading. There is a high level of personal detail, especially of a the author’s first battle experiences in Normandy and of his last where he talks about fighting in an urban area against German paratroopers on the Dutch/German border. There are no feelings spared, the horror and sights and smells of modern war are described. Some of the battle passages are not for the faint of heart.

View all my reviews

2D Morale Chart

Further to the previous post Faith in Morale I’ve tried to synthesize the varioius readings on military psychology into a set of morale rules that might give a realistic ebb and flow to an engagement. I’ve not had a chance to test these yet, but here’s what the chart looks like.

v01 of the 2D Morale Chart, (c) 2014 James Kemp
v01 of the 2D Morale Chart, (c) 2014 James Kemp

Reading through the various OR type publications it seems to me that morale is affected by proximity to both friends and the enemy. The closer solders get to the enemy the more they seem to do things other than follow orders. This is not really a surprise, but it’s nice to see the research back up the gut feel.

Where I can find hard numbers for things I have used them to construct the 2D morale chart. In some ways this is sort of arbitrary, the numbers aren’t comprehensive enough to complete it. I’ve taken distance from the enemy as one axis and propensity to fight as the other axis. Probability isn’t as straightforwards as counting the squares, as I’ve chosen to use a 2d6 roll on this chart. This tends the answer towards 7 and I have used the probabilty of a given result (or greater) as the method for putting the shading on the boxes. Where certain conditions make something more or less likely the difference from the probability of 7 or more is what I’ve used to decide whether the die modifier would be +/- 1, 2 or 3 (most end up as +/-1).

I’ll post up more of this, along with some ideas on how I expect it to work, in a later post. Broadly though each glob of troops will have a marker on the chart showing their current morale state. Each time morale is tested they will roll 2d6 and modify. Scores of 6-8 (about 45%) will remain unchanged. scores of 9-11 will improve morale and 12 will improve it and move the unit closer to the enemy (except for defenders in prepared positions). Scores of 4 or 5 will decrease morale, a 2 or 3 will decrease morale and cause the soldiers to give ground back to cover.

 

Book Review – Bullets and Brains by Leo Murray

Brains and Bullets: How Psychology Wins WarsBrains and Bullets: How Psychology Wins Wars by Leo Murray

My rating: 5 of 5 stars

Brains and Bullets is an excellent and very readable book which tries to put some hard numbers on a variety of psychological tactics that can be used to persuade your own troops to fight and the enemy to give up.

This is an excellent work on what happens in combat and why. It is very readable, structured into bite sized chunks on the key phenomena and then some joining up when it has all been explained. Each chapter opens with an account from a real soldier who experienced that psychological effect in combat. This is then analysed and explained, pulling in other examples as required to show that it isn’t an isolated incident but a general effect. Those examples range from the Napoleonic Wars right up to operations in Afghanistan, and they’re the products of proper scientific research not just a collection of war stories from unreliable sources.

That said there is no need to be an operational researcher, or scientist to understand the book. The language used is straightforward and direct, each of the concepts is very well explained and it forms an excellent introductory work as well as being well researched. The target audience is ordinary people without a technical or military background (although the author hopes that many military officers and civil servants will read it and think about it). Here’s my favourite line from the end of the book “if you are paid to be a military analyst, don’t forget that you work for the Crown (or the people) and for soldiers. You owe no allegiance to your cost centre manager. Crack on.”

If you do have a serious interest then it is worth saying that this isn’t fluffy pop psychology (I like those as light reading, having read Psychology at uni). All the conclusions are backed up with hard numbers from years of solid operational research. The author is hoping to influence army officers to use tactical psychology to make them more effective, so for example “even the hardest-fought flank attack seized ground with a smaller force, captured more of the enemy and caused fewer fatalities on both sides. flanking attack was six times more effective than a frontal attack.”

I’m not going to summarise this book like I did for the Stress of Battle, it’s way more available and affordable. Go buy it yourself (or borrow from the Library) and enjoy it. I certainly did.

View all my reviews

Commentary – Hunting Nazis

I’ve written a short story called Hunting Nazis for the End of Module Assessment (EMA) for A215 Creative Writing. The target word count was 2,500 with an upper limit of +10%. The first draft weighed in at 5k words, double the target length. However some of this was because although I plotted it I needed to tell myself the story in the first draft. Once I got to the end it was much easier to re-edit and take out some of it.

Hunting Nazis

The central premise is that Reggie and Dot (from the earlier story Planting the Past) have been hunting nazis guilty of war crimes against the members of the French resistance and SOE agents supporting the network that they were both part of during World War Two. The story takes place in Berlin in 1953 when they are tying up the last few loose ends.

There are a couple of supporting characters, Paul, another ex-resistance fighter, but one that Dot (called Nancy by him as that was her code name) doesn’t trust, she’s convinced that he betrayed people to the Germans. He was arrested and deported to Berlin by the Gestapo as they left France in September 1944. Somehow he managed to survive this and the fall of Berlin to the Soviets and then establish a nightclub in a converted public air raid shelter near the Potsdamerplatz. One of his employees, a barman named Gustav is an ex-SS rifleman attached to the unit lead by SS Captain Hechte in the final days of the Reich. Reggie and Dot are looking to recover a relic stolen by Hechte and to confirm his death in May 1945 at the hands of the soviets.

There are also a couple of friendlies from their SOE days, still employed by British Intelligence but now spying on the soviets with the help of Paul and his nightclub. Their worry is that Reggie and Dot’s activities might scare off the Soviet officers they’ve been blackmailing if they are too blatant.

No spoilers, so that’s as much as I can say other than that it all comes to a climax in an abandoned bunker under the Soviet zone.

Enhanced by Zemanta

Book Review – Flames in the Field by Rita Kramer

Flames in the Field: Story of Four SOE Agents in Occupied FranceFlames in the Field: Story of Four SOE Agents in Occupied France by Rita Kramer

My rating: 3 of 5 stars

While this has lots of fascinating information about SOE Operations in France in WW2 it needs a better editor. The nature of the story, primarily of the secret operations in German occupied France in 1943 and the SD penetration of the SOE network, is one of many parallel threads and the uncovering of a mystery. So this makes it hard to just write a linear narrative, and the author has done a pretty good job of writing very readable prose that clearly explains what is going on. However there are a few places where the ordering of the material goes backwards within a few paragraphs and crucial pieces of information are given out of order.

The book shows an awful lot of research was done by the author, over a period of what seems to be years, and building on the work done by a number of predecessors. There is an academic level of referencing and footnotes.  There are several distinct parts to the book. The first is a narrative on four women SOE agents killed by the nazis at Natzweiler, which then widens to encompass the others that were arrested around the same time and that shared their captivity in Fresnes and then Karlsruhe. Each of these women is identified and has their life story before joining SOE told. Where it is known this then leads up to how they were captured.

Another piece of the narrative are the attempts by others (initally Vera Atkins in 1945-6 and then Jean Overton Fuller) to find out what happened to the women after they were arrested. This then leads nicely into attempts to work out whether or not the women were betrayed, and if so by whom. There has been a lot of controversy about this, and many of the participants in the events have competing theories. Traitors in SOE, strategic deception and sacrifice by the British, french informers, poor operational security of the SOE agents, German counter-intelligence competence. Each of these is disected in turn, sometimes adding new perspectives to help rule them in/out.

Lastly there is some discussion of the post-war discoveries as the secrets kept for 20-30 years following the war started to come out. How the revelations around both Ultra intelligence and the British strategic deception plans changed how the events of 1943 are interpreted to modern eyes.

On a content basis this should be a five star book, it draws together all the earlier sources and is well written. However the structure lets it down, and makes it harder to assimilate. It reads like the collected notes of the author more than as a structured narrative.

View all my reviews

Enhanced by Zemanta

The Stress of Battle – Pt5 Operational Research on WW2 Heroism

This is the fifth and final part of my extended review of The Stress of Battle by David Rowland. It is such a strong piece of operational research on WW2 heroism that I thought that it would be useful for wargame designers (and players) to understand what the research evidence is for what went on in WW2 battles. This part is on the effects of heroism and combat degradation.

Combat Degradation

Combat degradation is a measure of how less effective weapon systems and individual soldiers are in actual combat when compared to training exercises and range work. A score of 1.0 is equivalent to not being degraded at all. Degradation to 0.3 would mean that it was operating at 30% of its peacetime range effectiveness.

  • the analysis by Rowland’s team broadly matches that done by Wigram in 1943, that there are three classes of effectiveness.
    • About 20% of those involved could be classed as heroes (26% for guns, 9% for tanks).
    • Of the rest, one third were ineffective (either they didn’t engage, or what they did do didn’t have any significant impact) (27% of the total);
    • The remaining two-thirds were about 30% effective (53% of the total);
  • Weapon systems crewed with at least one hero were about five times more effective than those with no heroes;
  • Overall effectiveness of a unit = 0.2+([Heroes/gun]*0.8)
  • Leadership improves combat effectiveness (i.e. more officers/SNCOs present leads to greater effectiveness, which is the reason that tanks are less effective than gun crews).

Impact of Heroism

Rowland and his team compared the effectiveness of the most effective and the partly effective groups in both the historical battles for which there was information and also for the field trials conducted by the British Army in the 1970s & 1980s. What they found was that there was the same variability within the two groups, which was attributed to opportunities to engage. However there was a significant difference between the groups, which was attributed to heroes being more effective.

  • Heroism seems to be a product of genetics, social conditioning and values. Many recipients of gallantry awards had previously been mentioned in despatches, or were decorated again.
    • Comments on citations for subsequent decorations indicate that a second award always required a stronger case than the first award did.
  • Heroes maintain their combat effectiveness in future battles, even if not further awarded.
  • Heroism is more likely at higher ranks (i.e. officers and senior NCOs (Sergeants and above) are more likely to be in the higher performing groups than other ranks).
    • Officers had 1.56 Awards/KIA
    • SNCOs had 0.52 Awards/KIA
    • Other Ranks had 0.10 Awards/KIA
  • Rank may be an effect (promotion coming from heroic behaviour) or a cause (feeling responsible because of higher rank).
  • Crews operate at the level of the highest effective person present.

Probabilities of Heroic Action being recognised

Rank
Infantry
Guns
Senior Officers 30.00% 34.00%
Lieutenants 6.10% 4.20%
All Officers

14.00%

14.00%

Sergeants & Warrant Officers 6.10% 8.40%
Corporals / Bombardiers 2.50% 2.95%
Privates & Equivalent 0.48% 0.73%

NB there is a possibility that the awarding of decorations was unfairly skewed by rank, and that those of lower rank that performed heroically weren’t adequately recognised.

Gurkhas

Gurkha units were noticably different from British unit, and appear to be 60% more effective in inflicting casualties on the enemy and 60% more likely to be decorated. This comes at the price of higher levels of casualties.

Surprise & Shock

The defintion of Surprise is “the achievement of the unexpected in timing, place or direction such that the enemy cannot react properly”. This is distinct from Shock, where soldiers could react, but didn’t.

Again historical analysis was used and battles where surprise and shock were involved were identified. These were then compared with other battles with similar characteristics so that only either Shock or Surprise were different. The two factors being compared individually with a reference set.

Surprise

  • Attack surprise reduces infantry defence effectiveness by 60% at 3:1 attack ratio.
  • Attack surprise may vary with force ratio (being more marked at low ratios and less effective at higher ratios)
  • Surprise for tank vs tank reduces casualties  by a factor of 3 at 1:1 attack ratio for the side achieving surprise.
  • Attacks below 1:1 ratio were successful 65% of the time when surprise was achieved, where attacks at these ratios were never successful without surprise
  • At force ratios above 1:1 surprise is less important to success, although there is still higher levels of success with surprise, just not statistically significant.
    • with surprise force ratio is less important to success (at 1:1 70%, at 3:1 76%)
    • without surprise the probability of success increases in proportion to the force ratio (at 1:1 40%, at 3:1 54%)

Shock

  • Infantry attacks caused shock in about 15% of cases, rising to 50% when combined with surprise and some of the factors below. Three factors were found to have influenced the ability of infantry to inflict shock:
    • Charge distance was usually under 100 metres (limited by weight of kit), where it was longer that was found to be because the enemy had already broken.
    • Visibility was significant, typically shock occurs at night or in poor visibility including where the terrain offers concealment
    • Defence morale was affected by Battle cries, cheers and yells seemed to put defenders off balance.
      • Bayonets played a major role (but not to cause casualties, as a psychological weapon inducing the enemy to surrender or run away).
  • Tank attacks caused shock in about 10% of battles analysed.
    • ‘Invulnerable’ tanks cause shock which can lead to panic, in about 50% of cases
    • Surprise alone caused shock in 27% of the time
    • Surprise + invulnerable tanks gave 70% Shock
    • Surprise + poor visibility gave 85% shock
    • Surprise + all of the above gave 95% shock
  • Air attacks cause shock most often when they are a dive/strafe attack where the aircraft is aimed directly at the target.
  • Typically shock by ground attack reduces defence effectiveness by 65%.

 

 

 

 

The Stress of Battle – Part 4 – Op Research on Anti-Tank Combat

IWM caption : El Alamein 1942: British tanks m...
IWM caption : El Alamein 1942: British tanks move up to the battle to engage the German armour after the infantry had cleared gaps in the enemy minefield. (Photo credit: Wikipedia)

This is the fourth part of my review of The stress of battle: quantifying human performance in combat by David Rowland, which is an essential piece of Operational Research on WW2 and Cold War combat operations. This part covers the findings on anti-tank combat.

Anti-Tank Combat

Unlike small arms, the effectiveness of weapons used for anti-tank combat has changed considerably over the course of the mid-20th century. From non-specialist gunfire in WW1, to high velocity armour piercing in WW2 and then to Anti-Tank Guided Weapons in the Cold War period. This makes the operational research on anti-tank combat harder to do because the start point needs to be battles where only one kind of AT weapon is in action. Much of the analysis on anti-tank combat starts with the ‘Snipe’ action during the second battle of El Alamein in North Africa where data on each of the guns individually was available.

  • ‘heroic performance’ plays a large factor in the effectiveness of anti-tank guns
  • about a quarter of guns (at most) performed heroically (including those where platoon, company or battalion level officers assisted with firing guns)
Campaign / Battle Heroes Others

No. Guns in combat

Total engagements

Tanks Hit per target per gun engagement

No. Guns in combat

Total engagements

Tanks Hit per target per gun engagement

Greece (1941)

8

8

0.400

38

44

0.054

Alamein (2RB at Snipe)

10

25

0.150

23

27

0.048

Medenine (Queens Bde)

2

7

0.430

22

38

0.027

Medenine (Guards & NZ)

6

9

0.390

14

14

0.120

Total all battles

26

49

0.275

97

123

0.052

  •  rate of fire is proportionate to target availability (i.e. when there are multiple targets crews fire faster)
  • the median point for heroes was 0.3 tank casualties per gun, where for non-heroes it was 0.03 tank casualties per gun
  • tanks are less effective in defence than AT guns alone, or tanks supported by AT Guns
  • AT Guns with tanks apparently kill three times more tanks than the tanks would on their own
  • AT Gun performance is attributed to having a higher concentration of SNCOs and Officers with deployed ATG compared to tanks (about three times as many)
  • heroes were disproportionately represented by SNCOs and Officers (at least in terms of who got the medals), in 75% of cases an SNCO or Officer senior to the gun crew commander was involved
  • Paddy Griffith is quoted on tank casualties that “relatively few appeared to have been caused by enemy tanks”

Overall it shows that the biggest single effect in anti-tank combat was down to leadership. Where gun crews are well lead then they are significantly more effective in battle. This is assuming that the guns in question can have some effect on the tanks that they are shooting at, which was the case in all of the battles examined (including a mix where the guns defended successfully with those where the gun lines were overrun by tanks).

Concluded in Part 5 – Operational Research on Heroism, Shock & Surprise

 

Enhanced by Zemanta

The Stress of Battle – Part 3 – Op Research on Terrain Effects

504th Regiment, 82nd Airborne troops advancing...
504th Regiment, 82nd Airborne troops advancing through snow-covered forest during the Battle of the Bulge (Photo credit: Wikipedia)

This is the third part of my extended review of The Stress of Battle by David Rowland. It is such a strong piece of operational research that I thought that it would be useful for wargame designers (and players) to understand what the research evidence is for what went on in WW2 battles.

Fighting in Woods

The data comes from an analysis of 120 battles that took place in woods or forests from the US Civil War to the Korean War. It also applied all the things from the previous research and tried to see how woods differed from combat in other types of terrain.

Woods Open Urban
Attacker casualties per defence MG (at 1:1 force ratio)

0.818

2.07

0.76

Force Ratio Power Relationship

0.418

0.685

0.50

  • Defence is less effective in woods, most likely because limited fields of view mean that the engagement ranges are shorter
  • Combat degradation is greater in woods during night battles
  • Artillery suppression is less effective in woods (presumably because the trees absorb some of the shell splinters)
  • Attack casualties reduce with attacker experience (after ten battles attacker casualties are half of that of inexperienced troops)

Continued in Part 4 – Operational Research on Anti-Tank Combat

Enhanced by Zemanta

Stress of Battle – Part 2 – Op Research on Urban Battles

Belgian soldiers during an exercise
Belgian soldiers during an exercise (Photo credit: Wikipedia)

This is the second part of my review of The stress of battle: quantifying human performance in combat by David Rowland, which is an essential piece of Operational Research on WW2 and Cold War combat operations.

For this part I thought that I would focus on the lessons on urban battles. Rowland and his team used historical analysis on lots of WW2 urban battles and then compared this to a series of field trials using laser attachments to small arms and tank main armaments in the late 1970s and early 1980s.  The approach was to find battles where single variables could be controlled, and then use them to work out what the effect of that variable was on outcomes.

Here’s an interesting table on how attacker casualties vary by odds and the density of defending machine guns. Interestingly, in successful assaults the defender casualties are constant.

Force Ratio Attack Force(100 man Inf Company in Defence) Attack Casualties        (killed and wounded) Defence Casualties (Killed, POW & Wounded)
1 MG / Section 2 MG / Section

1:1

Infantry Only

16

24

80

3:1

Infantry Only

27

40

80

1:1

Heavy Tank Support (no def AT)

3

12

80

3:1

Heavy Tank Support (no def AT)

5

20

80

1:1

Trained attack – infantry only

8

12

80

1:1

Trained attack – Heavy AFV support

2

6

80

The interesting thing for me is that training/experience counts for a lot, halving casualties. Also attacking with the conventional 3:1 odds for success increases the casualties that you suffer, without having any appreciable difference in those inflicted on the enemy (although it does make it more likely for succesful attacks with untrained/inexperienced troops).

English: Cilieni This is a fake village that i...
English: Cilieni This is a fake village that is used for training for fighting in a built up area (FIBUA). The village has been named after the adjacent river, and all the street names are in Welsh, although it is most representative of an East European village. This area is not often open to the public. (Photo credit: Wikipedia)

Adding armour support makes a huge difference too. Although tanks in urban areas are more vulnerable if they lose their infantry support. However with infantry they significantly reduce attacker casualties.

  • Defence experience gave no detectable benefit to causing casualties, but attack experience does (in urban combat)
  • typically three times as many defenders will surrender (some wounded) as are killed or withdraw, the only sensitivity on this is being completely surrounded (so 20% dead, 60% captured (incl wounded) and 20% withdraw);
  • attack casualties are less affected by force ratio in urban attacks than in open counrtyside;
  • successful defence of urban areas is best achieved by light defence with counter attacks supported by armour

Rubble & Prepared Defences

This another area covered. There is a general increase in attacker casualties by about 50% when defenders are in rubble or prepared defences. The primary effect of rubble though is to slow down rates of advance.

  • Rubble halved the rate of advance compared to undamaged urban areas
  • maximum unopposed advance rates were about 800 metres per hour in urban areas (400m/hr for rubble)
  • Opposition slowed the advance by a factor of 7

An interesting aside on this was the relative effectiveness of different types of German Infantry. Parachute troops and Panzergrenadiers were reckoned to be tougher opponents than normal infantry. However the analysis showed that the extra stubbornness was a factor of the higher than normal allocation of MGs to those troops. The rate of attacker casualties per defence MG wasn’t significantly different.

Continued in Part 3 – Operational Research on Terrain Effects

 

 

Enhanced by Zemanta

Book Review – The Stress of Battle by David Rowland (Part 1)

Real shooting tactical exercises in Smardan sh...
Real shooting tactical exercises in Smardan shooting-range with the 100 mm anti-tank gun M1977. (Photo credit: Wikipedia)

Not exactly a book review, more of a synopsis of a great work of Operational Research by David Rowland. The Stress of Battle: Quantifying Human Performance in Combat is the end result of years of work by David Rowland and his team at the Ministry of Defence. Rowland was the father of historical analysis as a branch of Operational Research.

This particular work looks at a combination of field analysis experiments in the 1980s using lasers, well documented WW2 engagements and a handful of battles from other wars. Almost every page in it is packed with evidence or explanations of the complex methodology used to ensure that you could get controlled results from an otherwise messy and chaotic environment. If you are playing or designing wargames then this is one of the books that you absolutely must have on your book shelves (and have read too).

When I was reading the book I was often underlining or marking sections with post-it flags. In particular I drew the following interesting snippets from the book:

  • Tanks suppress defenders, but you need at least two tanks per defending MG to have any effect;
  • Combat degradation is about a factor of 10 compared to performance on firing ranges
  • Anti-tank guns focus the attention of tanks from suppressing MGs, and the bigger the anti-tank gun the more attention it diverts (unsurprisingly);
  • Fortifications & obstacles (i.e. properly prepared defensive positions) increase defence effectiveness by a factor of 1.65;
  • In defending against a 3:1 attack, the average rifleman will inflict 0.5 casualties on the attackers whereas a MG will inflict 4 casualties;
  • 1 in 8 riflemen will cause 4 casualties, and the other 7 none;
  • MG equivalents for casualty causing are: 9 rifles = 1 MG; 1 medium mortar (81mm) = 3 MG;
  • Combat effectiveness grows with experience, improving the casualty exchange ratio;

This is just a taster of what the book contains. Really worth reading. Not only that it is fantastically well illustrated with loads of graphs, diagrams and pictures from the field exercises to illustrate the points in the text.

Continued in Part 2 – Operational Research on Urban Warfare

 

Enhanced by Zemanta